线性模型的基本形式就是因变量是由自变量作用加和而成,在这个语境下,其实把自变量改为变量,放宽独立性限制,也能将一些非线性部分,例如高幂次的自变量及变量间的乘积或交互作用考虑进去,这样,线性模型几乎可以覆盖绝大多数科研中常用的假设检验与模型。在实际问题的抽象上,只要可以把目标数值的变动用其他数值的拆解或组合表示出来,那么可以粗略认为标准化后其他数值的回归系数可用来比较不同数值间的贡献,而对于该系数的显著性检验则可以说明该系数的影响是否显著。

打个比方,流行病学里常说的某种疾病发病率或风险比在考虑了人群性别、年龄、BMI、吸烟史等的影响后发现某污染物起了显著影响,这就是说在一个目标变量为病发病率 …